小学生も解ける高校入試問題 大阪教育大附属 - 質問解決D.B.(データベース)

小学生も解ける高校入試問題  大阪教育大附属

問題文全文(内容文):
109×1009+91×991

大阪教育大学附属高等学校平野校舎
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
109×1009+91×991

大阪教育大学附属高等学校平野校舎
投稿日:2023.05.08

<関連動画>

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 

【高校受験対策/数学】死守66

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守66

①$6x\times2xy\div3y$を計算しなさい。

②$\sqrt{18}-6\sqrt{2}$を計算しなさい。

③$x^2+4x-12$を因数分解しなさい。

④2次方程式$3x^2-5x+1=0$を解きなさい。

⑤方程式$5x+3=2x+6$を解きなさい。

⑥$\frac{1}{2}(3x-y)-\frac{4x-y}{3}$を計算しなさい。

⑦2次方程式$2(x-2)^2-3(x-2)+1=0$を解きなさい。

⑧$x=2+\sqrt{3}$、$y=2-\sqrt{3}$のとき、$(1+\frac{1}{x})(1+\frac{1}{y})$の値を求めなさい。

⑨右の図のような、底面の半径が3cm、高さが4cmの円錐があります。この円錐の表面積を求めなさい。ただし円周率は$\pi$とします。

➉右の図のように、円Oとこの円の外部の点Pがあります。
点Pを通る円の接線をコンパスと定規を使って1つ作図しなさい。
ただし、作するためにかいた線は消さないでおきなさい。
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 4発目!『+-がない編』 V=abcをa=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
V=abcをa=の形にしましょう。
この動画を見る 

【高校受験対策/数学】死守64

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#空間図形#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守64

①$\sqrt{26}\div\sqrt{2}$を計算しなさい

➁$2\sqrt{7} \times 3\sqrt{2}$を計算しなさい。

③$5\sqrt{3}+\sqrt{96}-8\sqrt{6}-\sqrt{27}$を計算しなさい。

④$5 \lt \sqrt{a} \leqq 6$を満たす整数$a$の個数を求めなさい。

⑤3点$A(2,1)$、$B(6,-5)$、$C(k,10)$が一直線上にあるとき、$k$の値を求めなさい。

⑥右の表は、あるクラスの女子20人の握力の記録を度数分布表にまとめたものです。
この20人の記録の平均値を求めなさい。

⑦大、小2個のさいころを同時に投げるとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とします。
このとき$\frac{b}{a}$が整数となる確率を求めなさい。

⑧A地点からB地点に行くのに、A地点から途中にあるC地点までは時速$a$ kmで2時間歩き、C地点からB地点までは時速$b$ kmで3時間歩きました。
このとき平均の速さは時速何kmか、$a$、$b$を用いた式で表しなさい。

⑨右の図は、1辺の長さが9cmの立方体から、頂点Aに集まる 3辺 AB、AD、AEをそれぞれ3等分する点のうち、
頂点Aに近い方の3点、P、Q、Rを通る平面で頂点Aを切り取り、同様に頂点B、C、Dも切り取ったものです。
このとき立体の体積は何㎥か求めなさい。
この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 
PAGE TOP