【中学数学】合同の証明の演習~北海道公立高校入試標準2019~【高校受験】 - 質問解決D.B.(データベース)

【中学数学】合同の証明の演習~北海道公立高校入試標準2019~【高校受験】

問題文全文(内容文):
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。

1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。

2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
チャプター:

00:00 はじまり

00:17 問題だよ

00:35 問題解説(1)

01:48 問題解説(2)

06:49 まとめ

07:09 問題と答え

単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#北海道公立高校入試
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。

1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。

2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
投稿日:2020.10.29

<関連動画>

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.

西大和学園高校過去問
この動画を見る 

気付けば一瞬!!式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
この動画を見る 

中2数学「式の変形」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等式の変形について解説します。
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 一気見用 まとめて見ると、理解も繋がる深まる

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)xはyに比例し、x=3のときy=9となる。yをxの式で表しなさい。
(2)xはyに反比例し、x=3のときy=9となる。yをxの式で表しなさい。
(3)次の条件を満たす1次関数を求めよ。 傾きが2で、x=5のときy=7
(4)次の条件を満たす1次関数を求めよ。 変化の割合が-1で、x=5のときy=7
(5)次の条件を満たす1次関数を求めよ。 切片が3で、x=5のときy=7
(6)次の条件を満たす1次関数を求めよ。 直線y=3xに平行、x=5のときy=7
(7)次の条件を満たす1次関数を求めよ。 直線y=3x+3に平行、x=5のときy=7
(8)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(9)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(10)次の条件を満たす1次関数を求めよ。 直線y=2x-4に平行で、直線y=-2x+4とy軸上で交わる
(11)次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
(12)xの変域が-2≦x≦4のとき、yの変域が-9≦y≦3なる1次関数を求めよ。
この動画を見る 
PAGE TOP