問題文全文(内容文):
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。
1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。
2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。
1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。
2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
チャプター:
00:00 はじまり
00:17 問題だよ
00:35 問題解説(1)
01:48 問題解説(2)
06:49 まとめ
07:09 問題と答え
単元:
#数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#北海道公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。
1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。
2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。
1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。
2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
投稿日:2020.10.29