#51 数検1級1次 過去問 逆三角関数 - 質問解決D.B.(データベース)

#51 数検1級1次 過去問 逆三角関数

問題文全文(内容文):
$\sin(\sin^{-1}(-\displaystyle \frac{5}{13})+\cos^{-1}(\displaystyle \frac{4}{5}))$の値を求めよ。

出典:数検1級1次 過去問
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\sin(\sin^{-1}(-\displaystyle \frac{5}{13})+\cos^{-1}(\displaystyle \frac{4}{5}))$の値を求めよ。

出典:数検1級1次 過去問
投稿日:2022.03.07

<関連動画>

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る 

札幌医大 三角方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
この動画を見る 

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

中央大2020微分 3次関数と直線の交点

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2-2$と$y=k(x-1)-2$が相異なる3点で交わる$k$の範囲を求めよ.

2020中央大(経)過去問
この動画を見る 
PAGE TOP