【高校受験対策】数学-関数23 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数23

問題文全文(内容文):
右の図において,①は関数$y=\dfrac{1}{2}x^2$,
②は$x$軸に平行な直線のグラフである.
①と②の交点のうち,$x$座標が正のものを$A$,負のものを$B$とする.
また,$C$は$x$軸上を動く点で,2点$B,C$を通る直線のグラフを③とし,
①と③のグラフの交点のうち,$B$でないほうを$P$とする.
ただし,点$C$の$x$座標は正である.

①点$A$の$x$座標が3のとき,$△OAB$の面積を求めよ.

②点$B$の$x$座標を$-4$,点$C$の$x$座標を$12$とするとき,
直線$BC$の式を求めよ.

③点$B$の$y$座標を$4$とする.
$△OPB$と$△OCP$の面積が等しいとき,
$△OCB$を$x$軸を軸として1回転させてできる
立体の体積を求めよ.

図は動画内を参照
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において,①は関数$y=\dfrac{1}{2}x^2$,
②は$x$軸に平行な直線のグラフである.
①と②の交点のうち,$x$座標が正のものを$A$,負のものを$B$とする.
また,$C$は$x$軸上を動く点で,2点$B,C$を通る直線のグラフを③とし,
①と③のグラフの交点のうち,$B$でないほうを$P$とする.
ただし,点$C$の$x$座標は正である.

①点$A$の$x$座標が3のとき,$△OAB$の面積を求めよ.

②点$B$の$x$座標を$-4$,点$C$の$x$座標を$12$とするとき,
直線$BC$の式を求めよ.

③点$B$の$y$座標を$4$とする.
$△OPB$と$△OCP$の面積が等しいとき,
$△OCB$を$x$軸を軸として1回転させてできる
立体の体積を求めよ.

図は動画内を参照
投稿日:2016.11.20

<関連動画>

円と接線 2通りで解説

アイキャッチ画像
単元: #数学(中学生)#相似な図形
指導講師: 数学を数楽に
問題文全文(内容文):
xの角度は?
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

式の値  慶應女子 B

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a-c=d-b,abcd=1のとき
(a+b+c-d)(a-b+c+d)(a+b-c+d)(a-b-c-d)

慶應義塾女子高等学校
この動画を見る 

【高校受験対策】数学-関数25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,
関数$y=\dfrac{12}{x}$のグラフ上を$x \gt 0$の範囲で動く
点$A,x \lt 0$の範囲で動く点$B$があります.
点$B$の$x$座標の絶対値は点$A$の$x$座標の3倍であり,
線分$AB$と$x$軸との交点を$C$とします.
また,$x$軸上に点$D(5, 0)$があります.
これについて,次の各問いに答えなさい.

①点$A$の$x$座標が2のとき,直線$AD$の式を求めなさい.

②$\triangle ABD$の面積が28となるとき,
$\triangle ACD$の面積を求めなさい.

図は動画内を参照
この動画を見る 

平方根 泥臭く解くか華麗に解くか

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt {200} + \sqrt {300})(\sqrt {0.03} - \sqrt {0.02} -\sqrt {0.01})$

桐光学園高等学校
この動画を見る 
PAGE TOP