問題文全文(内容文):
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
チャプター:
0:00 オープニング
0:05 問題文
0:28 アプローチ
1:05 証明
2:23 エンディング
単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
投稿日:2023.11.25