問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。
出典:2018年大阪教育大学 入試問題
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。
出典:2018年大阪教育大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。
出典:2018年大阪教育大学 入試問題
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。
出典:2018年大阪教育大学 入試問題
投稿日:2022.08.04