整式の剰余 落とし穴注意! - 質問解決D.B.(データベース)

整式の剰余 落とし穴注意!

問題文全文(内容文):
$x^{2024}$を$(x^4-x^2+1)^2$
で割ったあまり
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}$を$(x^4-x^2+1)^2$
で割ったあまり
投稿日:2023.11.06

<関連動画>

福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
この動画を見る 

整数問題が苦手な人は要チェック!絶対に取りたい整数問題【関西医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
( 1) (a + 1)(a - 1)(b + 1)(b - 1) - 4ab を因数分解せよ。

( 2) (a + 1)(a - 1)(b + 1)(b - 1) = 4ab を満たす整数a,bの組で、 a < b の条件を満たすものは
?組あり、そのなかでa,bのどちらも正の整数となる組(a,b) は ?である 。

(2023年 関西医科大学)
この動画を見る 

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

千葉大 埼玉大 整式の剰余 三乗根 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$x^4+ax^3+ax^2+bx-6$が$x^2-2x+1$で割り切れるとき、a,bの値

埼玉大学過去問題
$\frac{1}{2-{}^3\sqrt7}=P+q{}^3\sqrt7+r^3\sqrt{49}$が成り立つ整数p,q,rの例をあげよ。
${}^3\sqrt7$と${}^3\sqrt9$ではどちらが2に近いか。
この動画を見る 
PAGE TOP