#東海大学医学部(2019) #極限 #Shorts - 質問解決D.B.(データベース)

#東海大学医学部(2019) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
投稿日:2024.02.26

<関連動画>

福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $f(x)$=$x^{-2}e^x$ ($x$>0)とし、曲線$y$=$f(x)$をCとする。また$h$を正の実数とする。さらに、正の実数$t$に対して、曲線C、2直線$x$=$t$, $x$=$t$+$h$、および$x$軸で囲まれた図形の面積を$g(t)$とする。
(1)$g'(t)$を求めよ。
(2)$g(t)$を最小にする$t$がただ1つ存在することを示し、その$t$を$h$を用いて表せ。
(3)(2)で得られた$t$を$t(h)$とする。このとき極限値$\displaystyle\lim_{h \to +0}t(h)$を求めよ。
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 

#高知工科大学2024#定積分_25#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$

出典:2024年 高知工科大学
この動画を見る 

福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
この動画を見る 

鳥取大 ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3-5x^2-5x+4$を因数分解しなさい

鳥取大過去問
この動画を見る 
PAGE TOP