問題文全文(内容文):
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$
次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$
次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$
(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$
次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$
次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$
(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
チャプター:
0:00 第一問解説
2:40 第二問解説
6:43 第三問解説
7:35 第四問解説
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$
次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$
次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$
(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$
次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$
次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$
(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
投稿日:2025.03.19









