問題文全文(内容文):
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。
(2)
関数$f(x)$の最大値を求めよ。
出典:2012年首都大学東京 入試問題
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。
(2)
関数$f(x)$の最大値を求めよ。
出典:2012年首都大学東京 入試問題
チャプター:
00:00 問題提示
00:13 本編スタート (1)の解答
02:27 (2)の解答
03:51 作成した解答①
04:09 作成した解答②
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。
(2)
関数$f(x)$の最大値を求めよ。
出典:2012年首都大学東京 入試問題
(1)
実数$x$に対して定積分$f(x)=\displaystyle \int_{0}^{1}t\ \sin(x+\pi t)dt$を求めよ。
(2)
関数$f(x)$の最大値を求めよ。
出典:2012年首都大学東京 入試問題
投稿日:2022.06.27