【数Ⅱ】指数関数のグラフと不等式【底が1より大きいか小さいかで全然違うグラフになる!】 - 質問解決D.B.(データベース)

【数Ⅱ】指数関数のグラフと不等式【底が1より大きいか小さいかで全然違うグラフになる!】

問題文全文(内容文):
指数関数のグラフと不等式に関して解説していきます.
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
指数関数のグラフと不等式に関して解説していきます.
投稿日:2022.07.21

<関連動画>

ナイスな指数方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を(x,y)としたとき、
$16^{x^2+y}+16^{x+y^2}=1$を求めよ.
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(6)〜指数方程式が解をもたない条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)aを実数とする。実数xの関数f(x)=$4^x$+$4^{-x}$+a($2^x$+$2^{-x}$)+$\frac{1}{3}a^2$-1 がある。
(i)t=$2^x$+$2^{-x}$とおくときtの最小値は$\boxed{\ \ ソ\ \ }$であり、f(x)をtの式で表すと$\boxed{\ \ タ\ \ }$である。
(ii)a=-3のとき、方程式f(x)=0の解をすべて求めると、x=$\boxed{\ \ チ\ \ }$である。
(iii)方程式f(x)=0が実数解を持たないようなaの値の範囲は$\boxed{\ \ ツ\ \ }$である。
この動画を見る 

1963の1963乗を10で割った余りは? 2024中央大附属

アイキャッチ画像
単元: #数Ⅱ#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$1963^{1963}$を10で割った余りを求めよ
2024中央大学附属高等学校
この動画を見る 

変な方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{x} \right)^{x+1}=\left(1+\dfrac{1}{11} \right)^{11}$
これを解け.
この動画を見る 
PAGE TOP