大学入試問題#424「有名な極限!!」 鹿児島大学2018 #極限 - 質問解決D.B.(データベース)

大学入試問題#424「有名な極限!!」 鹿児島大学2018 #極限

問題文全文(内容文):
(1)
$e^t \gt \displaystyle \frac{t^2}{2}(t \gt 0)$を示せ

(2)
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{log(x+1)}{x+1}$

出典:2018年鹿児島大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:12 本編スタート
04:33 作成した解答①
04:43 作成した解答②
04:52 エンディング(楽曲提供:兄いえてぃさん)

単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$e^t \gt \displaystyle \frac{t^2}{2}(t \gt 0)$を示せ

(2)
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{log(x+1)}{x+1}$

出典:2018年鹿児島大学 入試問題
投稿日:2023.01.16

<関連動画>

【高校数学】数Ⅲ-65 数列の極限①

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の収束、発散を調べよ。

①$-3,-1,1,・・・2n-5,・・・$

②$1,\dfrac{3}{2},\dfrac{5}{3},・・・,2-\dfrac{1}{n},・・・$

③$-1,-4,-9,・・・,-n^2,・・・$

④$-4,16,-64,・・・,(-4)^n,・・・$
この動画を見る 

【演習編!】演習で無限等比級数の知識をどう使う?!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
(1)$\displaystyle \sum_{n=1}^\infty \frac{1}{2}(\frac{5}{4})^{n-1}$
(2)$\displaystyle \sum_{n=1}^\infty \frac{4^n-3^{n+1}}{3^{2n}}$
この動画を見る 

【数Ⅲ】【関数と極限】数列の極限5 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{ a_n \}, \{ b_n \}, \{ c_n \}$について、次の事柄は正しいか。
正しいものは証明し、正しくないものは、その反例をあげよ。
ただし、$\alpha$は定数とする。
(1) $\displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = \infty$ ならば $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0$
(2) $ \displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 0$ ならば $ \displaystyle \lim_{n \to \infty}a_nb_n=0$
(3) $ \displaystyle b_n \lt a_n \lt c_n , \lim_{n \to \infty}(c_n-b_n)=0$ ならば $ \{ a_n \}$は収束する。
(4) $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0, \lim_{n \to \infty}a_n =\alpha$ ならば $\displaystyle \lim_{n \to \infty}b_n= \alpha$
この動画を見る 

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 

福田のおもしろ数学130〜合成関数の性質

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)$=$ax$+$b$, $g(x)$=$cx$+$d$ ($a$≠0, $c$≠0)とする。このとき次の条件を満たす関数$h(x)$, $k(x)$を求めよ。
(1)$g(h(x))$=$f(x)$ (2)$k(g(x))$=$f(x)$ 
この動画を見る 
PAGE TOP