問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
チャプター:
0:00 オープニング
0:20 (1)の解答分析から
1:10 面積が最大になるということは 2:30 図形の特徴を考えて立式
3:50 まとめ
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
投稿日:2021.08.21