大学入試問題#415「解法は何通りかありそう・・・」 兵庫県立大学2022 #定積分 - 質問解決D.B.(データベース)

大学入試問題#415「解法は何通りかありそう・・・」 兵庫県立大学2022 #定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\displaystyle \frac{\sin3x}{\sin2x})^2 dx$

出典:2022年兵庫県立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\displaystyle \frac{\sin3x}{\sin2x})^2 dx$

出典:2022年兵庫県立大学 入試問題
投稿日:2023.01.06

<関連動画>

大学入試問題#179 秋田県立大学(2004) 定積分 ウォリス積分①

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(1-x^2)^3 dx$

出典:2004年秋田県立大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第3問〜逆関数と定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

実数$x$に対して、関数

$f(x)=\dfrac{1}{3}x+\sqrt{\dfrac{1}{9}x^2+8}$

がある。ただし、定義域は$x\geqq 0$である。

$y=f(x)$の逆関数を$y=g(x)$とする。

(1)$g(x)$を求めると、$g(x)=\boxed{ナ}$であり、

$g(x)$定義域は$\boxed{ニ}$である。

(2)$\displaystyle \int_{2\sqrt2}^{4}g(x)dx$を求めると$\boxed{ヌ}$である。

(3)$\displaystyle \int_{0}^{3} f(x) dx$を求めると$\boxed{ネ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

【高校数学】毎日積分66日目~47都道府県制覇への道~【⑩愛媛】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
この動画を見る 

絶対に落としたくない問題です【自治医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
この動画を見る 
PAGE TOP