数と式 1次不等式の利用【ホーン・フィールドがていねいに解説】 - 質問解決D.B.(データベース)

数と式 1次不等式の利用【ホーン・フィールドがていねいに解説】

問題文全文(内容文):
次のものを求めよ。
(1)不等式$5(x-3)\lt -2(x-14)$を満たす最大の整数x
(2)不等式$\dfrac{x}{2}+\dfrac{4}{3}\geqq x-\dfrac{2}{3}$を満たす自然数xの個数

不等式$2x-3gt a+8x$について、次の問いに答えよ。
(1)解が$x\lt 1$となるように、定数aの値を定めよ。
(2)解が$x=0$を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)$ax=1$
(2)$ax\leqq 2$
(3)$ax+6\gt 3x+2a$
チャプター:

0:00 オープニング
0:04 1(問題1)の(1)
1:41 1(問題1)の(2)
3:25 2(問題2)の(1)
5:06 2(問題2)の(2)
7:56 2(問題2)の(3)
11:23 3(問題3)の(1)
14:32 3(問題3)の(2)
16:24 3(問題3)の(3)

単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式$5(x-3)\lt -2(x-14)$を満たす最大の整数x
(2)不等式$\dfrac{x}{2}+\dfrac{4}{3}\geqq x-\dfrac{2}{3}$を満たす自然数xの個数

不等式$2x-3gt a+8x$について、次の問いに答えよ。
(1)解が$x\lt 1$となるように、定数aの値を定めよ。
(2)解が$x=0$を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)$ax=1$
(2)$ax\leqq 2$
(3)$ax+6\gt 3x+2a$
投稿日:2023.05.05

<関連動画>

福田のわかった数学〜高校1年生第7回〜絶対値(第3回)

アイキャッチ画像
単元: #数Ⅰ#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第3回)
次の不等式を解け。
$|x+2|+|2x-1| \lt 4 $
この動画を見る 

京大の三角関数!18度系の三角比はどう扱う? #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由を付けて判定せよ。
この動画を見る 

熊本大(医)整数・数列・二次関数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$

(1)
$a_{99}$


(2)
$-n^2+2na_n$の最大値とそのときの$n$

出典:1989年熊本大学医学部 過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第3問〜絶対値の和の最小値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ...., $a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_2$=5 となる確率を求めよ。
(2)$K_3$=5 となる確率を求めよ。
(3)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$, ...., $a_n$に関する必要十分条件を求めよ。

2023北海道大学文系過去問
この動画を見る 

【裏技】2次方程式の裏技

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の裏技紹介動画です
この動画を見る 
PAGE TOP