【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
 $\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:05 (2)解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
 $\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
投稿日:2025.02.01

<関連動画>

【高校数学】 数B-9 ベクトルの成分②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ a }=(2,1).\overrightarrow{ b }=(-2,3)$であるとき、$3\overrightarrow{ a }-\overrightarrow{ b }$を成分で表そう。

②$\overrightarrow{ a }=(-1,1).\overrightarrow{ b }=(1-3)$とするとき、$\overrightarrow{ p }=(-5,3)$を$\overrightarrow{ a },\overrightarrow{ b }$を用いて表そう。

③$\overrightarrow{ a }=(1,x).\overrightarrow{ b }=(x,x+6)$が平行になるように、xの値を定めよう。
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(5 ,0) $ ,$\vec{ b }=(-2 ,3)$ とする。
等式 $2\vec{ x }+\vec{ y }=\vec{ a }$ , $\vec{ x }+2\vec{ y }=\vec{ b }$ を満たす$\vec{ x }$,$\vec{ y }$ を成分表示せよ。
この動画を見る 

【数B】平面ベクトル:角の二等分線上の位置ベクトル(類神戸大学)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上に原点Oから出る、相異なる2本の半直線$OX、OY(\angle XOY\lt 180°)$上にそれぞれOと異なる2点A,Bをとる。
(1)$a=OA, b=OB$とする。点Cが$∠XOY$の二等分線上にあるとき、OCを実数$t(t\geqq 0)$とa, bで表せ。
(2)$∠XOY$の二等分線と$∠XAB$の二等分線の交点をPとする。$OA=2, B=3, AB=4$のとき、OPをa, bで表せ。
この動画を見る 

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る 
PAGE TOP