【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

問題文全文(内容文):
(1)OA=2a ,OA=3b ,OP=6b4a であるとき、
 OP//AB であることを示せ。ただし、a0 ,b0 で、ab は平行でないとする。
(2)OA=a ,OB=b ,OP=3a2b ,OQ=3aである
とき、PQ//OB であることを示せ。ただし、a0 , b0 で、ab は平行でないとする。
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:05 (2)解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)OA=2a ,OA=3b ,OP=6b4a であるとき、
 OP//AB であることを示せ。ただし、a0 ,b0 で、ab は平行でないとする。
(2)OA=a ,OB=b ,OP=3a2b ,OQ=3aである
とき、PQ//OB であることを示せ。ただし、a0 , b0 で、ab は平行でないとする。
投稿日:2025.02.01

<関連動画>

【数C】平面ベクトル:△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
この動画を見る 

鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
l1:x12=y23=z4
l2:x2a3=y3b2=z2b1
l3:x42a=y2b=z1a
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)l1がπ上にある
(3)l2,l3がπ上にあるa,bの値
この動画を見る 

【数学B/平面ベクトル】ベクトル方程式の総まとめ

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
A(2,4),d=(1,3)のとき、点Aを通り、dが方向ベクトルである直線の媒介変数表示を、媒介変数をtとして求めよ。
また、tを消去した式で表せ。


(2)
2点A(1,2), B(3,5)を通る直線の媒介変数表示を、媒介変数をtとして求めよ。


(3)
A(1,2),n=(3,4)のとき、点Aを通り、nが法線ベクトルである直線の方程式を求めよ。


(4)
A(1,2)を中心とし、半径が3である円の方程式を、ベクトルを利用して求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分5 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(3,1) ,b=(1,2) のとし、c=a+tb (tは実数)とする。
(1) |c|=15 のとき、tの値を求めよ。
(2) |c|の最小値と、そのときのtの値を求めよ。
この動画を見る 

京都府採用試験数学【2016】

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。

2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。

3. 複素数(1+3i2)2015+(13i2)2015

4. log23は無理数を示せ

5. OAB=|a1b2a2b1|2を示せ
*図は動画内参照

6. f(x)=e^x sinx
(1) 0xπ y=f(x)の極大値を求めよ。

(2)x軸とy=f(x) (0xπ)で囲まれた面積を求めよ。

7. 12015,22015,,20152015のうち既約分数の個数を求めよ。

8. nN
2(n+11)<1+12+13++1n
この動画を見る 
PAGE TOP preload imagepreload image