大学入試問題#312 明治大学2021 #定積分 #極限 - 質問解決D.B.(データベース)

大学入試問題#312 明治大学2021 #定積分 #極限

問題文全文(内容文):
$\displaystyle \lim_{ k \to \infty }\displaystyle \int_{0}^{1}\displaystyle \frac{e^{kx}-1}{e^{kx}+1}$

出典:2021年明治大学 入試問題
チャプター:

00:00 問題紹介
00:12 本編スタート
06:23 作成した解答①
06:36 作成した解答②
06:47 エンディング(視聴者の兄いえてぃさんが提供してくれました。)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ k \to \infty }\displaystyle \int_{0}^{1}\displaystyle \frac{e^{kx}-1}{e^{kx}+1}$

出典:2021年明治大学 入試問題
投稿日:2022.09.18

<関連動画>

大学入試数学#460「基本に寄り添って」 横浜国立大学(2000) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^32^{x^2}\ dx$

出典:2000年横浜国立大学 入試問題
この動画を見る 

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

大学入試問題#144 東京理科大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a}\displaystyle \frac{dx}{e^x+4e^{-x}+5}=log\sqrt[ 3 ]{ 2 }$が成り立つとき$a$の値を求めよ。

出典:2006年東京理科大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−2 三角関数の面積の二等分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#京都府立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の不等式が定める図形を$D$とする。
$0 \leqq x \leqq \displaystyle \frac{\pi}{2},0 \leqq y \leqq \sin2x$
(1)
曲線$y=a\ \sin\ x$と$y=\sin2x$が$0 \lt x \lt \displaystyle \frac{\pi}{2}$で交わるような定数$a$の範囲を求めよ。

(2)
曲線$y=a\ \sin\ x$が図形$D$を面積の等しい2つの部分に分けるような定数$a$を求めよ。
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP