大学入試問題#837「少し工夫がいる超良問!」 #筑波大学(2016) #極限 - 質問解決D.B.(データベース)

大学入試問題#837「少し工夫がいる超良問!」 #筑波大学(2016) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to -0 } (\sqrt{ \displaystyle \frac{1}{x^2}-\displaystyle \frac{a}{x}+2 }+\displaystyle \frac{b}{x})=1$が成り立つように、定数$a,b$の値を求めよ。

出典:2016年筑波大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to -0 } (\sqrt{ \displaystyle \frac{1}{x^2}-\displaystyle \frac{a}{x}+2 }+\displaystyle \frac{b}{x})=1$が成り立つように、定数$a,b$の値を求めよ。

出典:2016年筑波大学 入試問題
投稿日:2024.06.02

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(6)$0 \leqq x \leqq \pi, 0 \leqq y \leqq \pi$を満たすx,yに対して、等式$2\sin x+\sin y=1$が
成り立つとする。
$(\textrm{i})$この等式を満たすxの範囲は$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})x,y$が$2\cos x+\cos y=2\sqrt2$を満たすとき、$\sin(x+y)$の値を求めると
$\boxed{\ \ サ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

横浜国立大(改)整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{3}\sqrt{n^2+48P}$が整数となる自然数n,素数Pの組をすべて求めよ.

横国(改)過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第3問〜平均と分散の変換

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$(1)ある学校で100点満点のテストを行うことになった。
まず10人の教員で解いてみたところ、その得点のヒストグラムは
右図(※動画参照)のようになった。ただし、得点は整数値とする。
このデータの平均値は$\boxed{\ \ ア\ \ }$点、中央値は$\boxed{\ \ イ\ \ }$点、
最頻値は$\boxed{\ \ ウ\ \ }$点、分散は$\boxed{\ \ エ\ \ }$点である。
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均
値が$\overline{x}_A$、分散が$s_A^2$、B組の得点の平均値が$\overline{x}_B$、分散が$s_B^2$となった。
ただし、$\overline{x}_A,\overline{x}_B,s_A^2,s_B^2$はいずれも0ではなかった。このとき、B組の各生徒
の得点$x$に対して、正の実数aと実数bを用いて$y=ax+b$と変換し、
yの平均値と分散をA組の平均値と分散に一致させるためには、
$a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }$とすればよい。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

大学入試問題#144 東京理科大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a}\displaystyle \frac{dx}{e^x+4e^{-x}+5}=log\sqrt[ 3 ]{ 2 }$が成り立つとき$a$の値を求めよ。

出典:2006年東京理科大学 入試問題
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 
PAGE TOP