【数B】空間ベクトル:平面の方程式の求め方(②平面の方程式の一般形を用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。 - 質問解決D.B.(データベース)

【数B】空間ベクトル:平面の方程式の求め方(②平面の方程式の一般形を用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
投稿日:2020.11.29

<関連動画>

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。\\
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。\\
(\textrm{a})\angle BAC \lt \angle ABCを満たす場合、点Cは第\boxed{\ \ ア \ \ }象限に存在する。\\
(\textrm{b})\angle ABC \lt \angle ACBを満たす場合、点Cは\boxed{\ \ イ \ \ }の\boxed{\ \ ウ \ \ }に存在する。\\
(\textrm{c})\angle ACB \lt \frac{\pi}{2}を満たす場合、点Cは\boxed{\ \ エ \ \ }の\boxed{\ \ オ \ \ }に存在する。\\
(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}を満たす点Cが存在する領域(境界を含む)\\
の面積は\frac{\boxed{\ \ カ \ \ }}{\boxed{\ \ キク \ \ }}\pi-\frac{\sqrt{\boxed{\ \ ケ \ \ }}}{\boxed{\ \ コ \ \ }}である。\\
\\
\\
\boxed{\ \ イ \ \ },\boxed{\ \ エ \ \ }の解答群\\
①点Aを中心とし点Bを通る円\\
②点Bを中心とし点Aを通る円\\
③線分ABを直径とする円\\
④離心率が0.5で2点O,Aを焦点とする楕円\\
⑤離心率が0.5で2点O,Bを焦点とする楕円\\
⑥離心率が0.5で2点A,Bを焦点とする楕円\\
⑦線分ABを一辺にもち、重心のy座標が正である正三角形\\
⑧線分ABを一辺にもち、重心のy座標が正である正方形\\
\\
\\
\boxed{\ \ ウ \ \ },\boxed{\ \ オ \ \ }の解答群\\
①内部\ \ \ ②周上\ \ \ ③外部\ \ \ ④重心\\
\\
\\
(2)座標空間内の4点A(-1,0,0),B(1,0,0),C(s,t,0),Dを原点とし、\\
\angle BAC \lt \angle ABC \lt \angle ACB\\
を満たす四面体を考える。t \gt 0であり、点Dのz座標は正であるとする。\\
(\textrm{a})\angle ADC=\frac{\pi}{2}を満たす場合、点Dは\boxed{\ \ サ \ \ }に存在する。\\
(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}を満たす場合、\\
点Dのx座標はsであり、点Dは(s,\boxed{\ \ シ \ \ },0)を中心とする\\
半径\boxed{\ \ ス \ \ }の円周上にある。\\
(\textrm{c})以下ではt=\frac{4}{3}とする。設問(1)の結果から、点Cのx座標sは\\
\boxed{\ \ セ \ \ } \lt s \lt -\boxed{\ \ ソ \ \ }+\frac{\boxed{\ \ タ \ \ }\sqrt{\boxed{\ \ チ \ \ }}}{\boxed{\ \ ツ \ \ }}の範囲をとりうる。この範囲でsが変化\\
するとき、\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}を満たす四面体ABCDの体積は\\
s=\frac{\boxed{\ \ テ \ \ }}{\boxed{\ \ ト \ \ }}のとき最大値\frac{\boxed{\ \ ナ \ \ }}{\boxed{\ \ 二ヌ \ \ }}をとる。
\end{eqnarray}

2022杏林大学医学部過去問
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

【空間ベクトルの根本】空間ベクトルで混乱する前に確認したいこと〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
空間ベクトルについて解説します。
この動画を見る 

【数C】空間ベクトル:次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)
この動画を見る 

【数C】空間ベクトル:ベクトルの大きさの最小値

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(3,4,4), b=(2,3,-1)がある。実数 t を変化させるとき、c=a+tbの大きさの最小値と、その時の t の値を求めよ。
この動画を見る 
PAGE TOP