【数検2級】数学検定2級 問題1~問題3 - 質問解決D.B.(データベース)

【数検2級】数学検定2級 問題1~問題3

問題文全文(内容文):
問題1.次の式を展開して計算しなさい。
$(x+1)^2(x-1)^2$
問題2.次の式を因数分解しなさい。
$8a^2+22a+15$
問題3.次の式の分母を有理化しなさい。
$\dfrac{2}{\sqrt7}-1$
チャプター:

0:00 オープニング
0:18 数学検定について
3:12 問題1の解き方
3:48 問題2の解き方
4:22 問題3の解き方
5:28 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.次の式を展開して計算しなさい。
$(x+1)^2(x-1)^2$
問題2.次の式を因数分解しなさい。
$8a^2+22a+15$
問題3.次の式の分母を有理化しなさい。
$\dfrac{2}{\sqrt7}-1$
備考:【数検2級】数学検定2級 問題1~問題3
https://youtu.be/PJ-TzNwOebw

【数検2級】数学検定2級 問題4~問題8
https://youtu.be/aYMhlG67wpo

【数検2級】数学検定2級 問題9~問題12
https://youtu.be/N179SJxTbwE

【数検2級】数学検定2級 問題13~問題15
https://youtu.be/ILsHyZqKGMs
投稿日:2022.02.01

<関連動画>

【数検2級】高校数学:数学検定2級2次:問題2

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,P₁,P₂,P₃をそれぞれ求めなさい。
この動画を見る 

#数検準1級1次過去問#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の極限を解け。
$\displaystyle \lim_{ n \to \infty } \{2\sqrt{ n^2+4n }-\sqrt{ 4n^2+5n }\}$

出典:数検準1級1次
この動画を見る 

【中学数学】数学検定3級2次:問題6

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(13) nを正の整数とします。$\sqrt{120n}$が正の整数となるようなnの最小値を求めなさい。
(14) $x=\sqrt6+\sqrt2,y=\sqrt6-\sqrt2$のとき、$x^2-y^2$の値を求めなさい。
この動画を見る 

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
この動画を見る 

#数検準1級1次#5#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }} dx$

出典:数検準1級
この動画を見る 
PAGE TOP