福島大 複素数の基本問題 - 質問解決D.B.(データベース)

福島大 複素数の基本問題

問題文全文(内容文):
$
\begin{eqnarray}
&&2023福島大\\
&&Z=1+\sqrt{3}iの時\\
&&1+Z+Z^2+Z^3+Z^4+Z^5

\end{eqnarray}
$
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023福島大\\
&&Z=1+\sqrt{3}iの時\\
&&1+Z+Z^2+Z^3+Z^4+Z^5

\end{eqnarray}
$
投稿日:2023.10.28

<関連動画>

大学入試問題#52 防衛医科大学(2020) 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3=8$の虚数解の1つを$\alpha$とする。
$\alpha^4+6\alpha^3+8\alpha^2+8\alpha$の値を求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$
これを解け.

2022東海大(医)過去問
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。

(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。

(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。

(4)(3)の図形$K$の面積を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 
PAGE TOP