福島大 複素数の基本問題 - 質問解決D.B.(データベース)

福島大 複素数の基本問題

問題文全文(内容文):
$
\begin{eqnarray}
&&2023福島大\\
&&Z=1+\sqrt{3}iの時\\
&&1+Z+Z^2+Z^3+Z^4+Z^5

\end{eqnarray}
$
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023福島大\\
&&Z=1+\sqrt{3}iの時\\
&&1+Z+Z^2+Z^3+Z^4+Z^5

\end{eqnarray}
$
投稿日:2023.10.28

<関連動画>

【数学III】複素数平面のイメージ・ニュアンスが30分で丸わかり動画

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学III】複素数平面のイメージ・ニュアンス解説動画です
この動画を見る 

横浜市立(医・理)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023横浜市立(医・理)
$
\\
Z^4=Z^2-1をみたす\\
Z^{40}+2Z^{10}+\frac{1}{Z^{20}}
$
この動画を見る 

長崎大 3乗根 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
(1)$x^3=1$を解け
(2)$α=m+\sqrt7ni$とすると、$α^3=225+2\sqrt7i$が成り立つ。整数m,nを求めよ。
(3)$β^3=225+2\sqrt7i$を満たす複素数βをすべて求めよ。
この動画を見る 

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0$のとき,
$x^{30}+\dfrac{1}{x^{30}}$の値を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP