【高校数学】 数Ⅱ-65 円と直線の共有点① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-65 円と直線の共有点①

問題文全文(内容文):
◎次の円と直線の共有点の座標を求めよう。

①$x^2+y^2=2,2x-y+3=0$

②$x^2+y^2=5,2x-y-5=0$

◎次の円と直線の共有点の個数を求めよう。

③$x^2+y^2=1, y=-2x+3$

④$x^2+y^2=5,2x-y-2-0$
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円と直線の共有点の座標を求めよう。

①$x^2+y^2=2,2x-y+3=0$

②$x^2+y^2=5,2x-y-5=0$

◎次の円と直線の共有点の個数を求めよう。

③$x^2+y^2=1, y=-2x+3$

④$x^2+y^2=5,2x-y-2-0$
投稿日:2015.06.26

<関連動画>

福田の数学〜早稲田大学2025社会科学部第3問〜三角関数の最大最小と三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$\theta$の関数

$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$

を考える。

ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。

(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、

$f(\theta)$を$k$の関数で表せ。

(2)$f(\theta)$の最大値、最小値を求めよ。

また、そのときの$\theta$の値を求めよ。

(3) (1)の$k$に対して、$\theta$の方程式

$f(\theta)=ak$の解の個数を求めよ。

ただし、定数$a$は$0\lt a \leqq 3$とする。

$2025$年早稲田大学社会科学部過去問題
この動画を見る 

10兵庫県教員採用試験(数学:2番 円と直線)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$C:x^2+y^2=1,l:y=mx-2(m>0)$
は2点P,Qで交わる。
(1)$PQ=\sqrt 3$のときmを求めよ。
(2)△PQRが最大となる円C上の点Rの座標を求めよ。
*図は動画内参照
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(7)接線の公式と極線の公式、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$t$を正の実数とする。座標平面上に放物線$C_1:y=x^2$とその上の点$P(t,\ t^2)$がある。
Pにおける$C_1$の接線を$l$とし、法線を$m$とする。$l$とx軸との交点をQとする。
Pにおいて$l$に接し、さらにx軸にも接する円で、中心のx座標がt以下であるものを$C_2$
とする。$C_2$の中心をAとし、$C_2$とx軸の接点をBとする。
(1)lの方程式を求めよ。
(2)mの方程式を求めよ。
(3)$\angle BAP=\frac{\pi}{3}$であるとき、tの値を求めよ。
(4)(3)のとき、Aの座標を求めよ。
(5)(3)のとき、四角形ABQPの面積を求めよ。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP