【高校受験対策/数学】死守-95 - 質問解決D.B.(データベース)

【高校受験対策/数学】死守-95

問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
投稿日:2022.01.05

<関連動画>

【高校受験対策】数学-死守12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の問いに答えよ.

①$5 \times (-4)^2 -3^2$を計算せよ.

②$\dfrac{5x-3y}{3}-\dfrac{3x-7y}{4}$を計算せよ.

③$\sqrt{27}-\dfrac{12}{\sqrt 3}-\sqrt{75}$を計算せよ.

④$x=\sqrt7+2,y=\sqrt7-2$のとき,
$x^2-y^2$の値を求めよ.

⑤方程式$2x+3y+6=0$のグラフをかけ.

⑥2次方程式$(x-2)^2=6$を解け.

⑦$1,2,4,8,16,32$の数が書かれた棒が1本ずつ入っている箱がある.
この箱から棒を同時に2本取り出すとき,
2本の棒に書かれている数の和が3の倍数となる確率を求めよ.
ただし,どの棒の取り出し方も同様に確からしいものとする.

⑧箱の中に白い玉だけがたくさん入っている.
この箱に赤い玉を80個入れてよくかき混ぜ,箱から50個の玉を無作為に取り出すと,
赤い玉が9個含まれていた.
最初に箱の中に入っていた白い玉はおよそ何個であると推測されるか,
次の(ア)~(エ)から1つ選べ.

(ア)およそ320個
(イ)およそ360個
(ウ)およそ400個
(エ)およそ440個

図は動画内を参照
この動画を見る 

ガウス記号 2025渋谷幕張

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
正の数$x$に対して、$x$以下の最大の整数を$[x]$と表す。
\begin{eqnarray}
\left\{
\begin{array}{l}
[x] + [2x] = 7 \\
3x^2 - 4[2x]x + 16[x] = 0
\end{array}
\right.
\end{eqnarray}
$[x]$=? $x$=?
この動画を見る 

式の値 X求めなくていい

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\dfrac{1}{x+2024}=2024$
$\dfrac{1}{x+2025}= ?$
この動画を見る 

2025年浦和明の星女子中算数大問1(1)~(3)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#方程式#式の計算(単項式・多項式・式の四則計算)
指導講師: 重吉
問題文全文(内容文):
(12-9/2+1.25)+17.5*8/3-6/5*(3-2.88)+3/10

計算問題の宿題がでました。明子さんは1日目に全体の1/3と4問、2日目に残りの半分と2問、3日目には12問解いて、宿題をすべて終えました。問題は全部で何問ありましたか。

濃さの違う3つの食塩水A,B,Cがあり、それぞれの濃さは9%、12%、18%です。AとBの食塩水を2:1の重さの比で混ぜた後、Cの食塩水を加えて、合計240gの食塩水を作りました。その後、できた食塩水から水をすべて蒸発させたところ、残った食塩の重さは36gでした。混ぜたAの食塩水の重さは何gであったか答えなさい。
この動画を見る 

【高校受験対策】数学-死守26

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.

②$2(2x - y) - (x - y)$を計算しなさい.

③$\sqrt{27}-\sqrt{63}$を計算しなさい.

④$(x + 5)(x - 3)$を展開しなさい.

⑤$a(b + 8) - (b + 8)$を因数分解しなさい.

⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.

⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.

⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.

⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.

⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.

図は動画内参照
この動画を見る 
PAGE TOP