問題文全文(内容文):
$\sin\ x+\sin\ y=1$
$\cos\ x+\cos\ y=\displaystyle \frac{1}{3}$
のとき、$\tan\displaystyle \frac{x+y}{2}$の値を求めよ
出典:1999年早稲田大学商学部 入試問題
$\sin\ x+\sin\ y=1$
$\cos\ x+\cos\ y=\displaystyle \frac{1}{3}$
のとき、$\tan\displaystyle \frac{x+y}{2}$の値を求めよ
出典:1999年早稲田大学商学部 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\sin\ x+\sin\ y=1$
$\cos\ x+\cos\ y=\displaystyle \frac{1}{3}$
のとき、$\tan\displaystyle \frac{x+y}{2}$の値を求めよ
出典:1999年早稲田大学商学部 入試問題
$\sin\ x+\sin\ y=1$
$\cos\ x+\cos\ y=\displaystyle \frac{1}{3}$
のとき、$\tan\displaystyle \frac{x+y}{2}$の値を求めよ
出典:1999年早稲田大学商学部 入試問題
投稿日:2023.12.24