重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応) - 質問解決D.B.(データベース)

重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応)

問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
投稿日:2020.10.29

<関連動画>

茨城大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$


(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?

出典:2005年茨城大学 過去問
この動画を見る 

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
この動画を見る 

慶應義塾大 整式の剰余 杉山さん

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3で割って1余る自然数
$(x-1)(x^{3n}-1)$が$(x^3-1)(x^n-1)$で割り切れることを示せ

出典:2018年慶應義塾 過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 

大学入試問題#288 高知大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}dx$

出典:2019年高知大学 入試問題
この動画を見る 
PAGE TOP