福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
投稿日:2022.06.20

<関連動画>

因数分解 名古屋女子大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^6-7a^3-8$

名古屋女子大学
この動画を見る 

愛のある2次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$x^2-2ix-2-i=0$
この動画を見る 

放物線上の2点を通る直線の式を「3秒」で出だす方法

アイキャッチ画像
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
放物線上の2点を通る直線の式を「3秒」で出だす方法を解説していきます.
この動画を見る 

【中学から学ぶ!】正弦定理(1):三角比 特別講義~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
この動画を見る 

大学入試の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
整数、実数、複素数の各範囲で因数分解せよ。
$x^4-x^2-2=$
この動画を見る 
PAGE TOP