【高校受験対策/数学】死守-54 - 質問解決D.B.(データベース)

【高校受験対策/数学】死守-54

問題文全文(内容文):
高校受験対策・死守54

①$9-8 \div\frac{1}{2}$を計算せよ。

②$3(5a-b)-(7a-4b)$を計算せよ。

③$(2-\sqrt{6})(1+\sqrt{6})$を計算せよ。

④一次方程式$9x+4=5(x+8)$を解け。

⑤連立方程式を解け。
$7x-3y=6$
$x+y=8$

⑥二次方程式$3x^2+9x+5=0$を解け。

⑦右の表は、生徒40人について自宅からA駅まで歩いたときにかかる時間を調査し、度数分布表に整理したものである。
かかる時間が15分未満である人数は全体の何%か求めよ。

⑧図1で、点$O$は線分$AB$を直径とする円の中心であり、2点$C$、$D$は円$O$の周上にある点である。
$\angle AOC=\angle BDC$、$\angle ABD=34°$のとき、$\angle OCD$の大きさを求めよ。

⑨右下の図2で、$△ABC$は鋭角三角形である。
辺$AC$上にあり、$AP=BP$となる点$P$を、定規とコンパスを用いて作図せよ。
ただし、作図に用いた線は消さないでおくこと。

単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守54

①$9-8 \div\frac{1}{2}$を計算せよ。

②$3(5a-b)-(7a-4b)$を計算せよ。

③$(2-\sqrt{6})(1+\sqrt{6})$を計算せよ。

④一次方程式$9x+4=5(x+8)$を解け。

⑤連立方程式を解け。
$7x-3y=6$
$x+y=8$

⑥二次方程式$3x^2+9x+5=0$を解け。

⑦右の表は、生徒40人について自宅からA駅まで歩いたときにかかる時間を調査し、度数分布表に整理したものである。
かかる時間が15分未満である人数は全体の何%か求めよ。

⑧図1で、点$O$は線分$AB$を直径とする円の中心であり、2点$C$、$D$は円$O$の周上にある点である。
$\angle AOC=\angle BDC$、$\angle ABD=34°$のとき、$\angle OCD$の大きさを求めよ。

⑨右下の図2で、$△ABC$は鋭角三角形である。
辺$AC$上にあり、$AP=BP$となる点$P$を、定規とコンパスを用いて作図せよ。
ただし、作図に用いた線は消さないでおくこと。

投稿日:2020.09.04

<関連動画>

【3分で証明問題の理解を深める!】図形:熊本県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 熊本県の公立高校

$\triangle BDC ∞ \triangle DFE$であることを証明しなさい。

点C:線分AO上
点D:弧AB上
DC=DO

点E:DO上
ΑΕ=ΑΟ

点F: AEの延長と線分BD との交点

【線分ABを直径とする半円点○はABの中点】
※図は動画内参照
この動画を見る 

【応用の効く…!】整数:函館白百合学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#函館白百合学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
この動画を見る 

2023高校入試解説24問目  二乗の和で表せ③ 昭和学院秀英(改)

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
7225は4つの自然数で2乗の和で表せる。
例を1つあげよ。

2023昭和学院秀英高等学校
この動画を見る 

平方数  九州学院(熊本)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$20(3n+6)$がある整数の平方になる最小の自然数nを求めよ。

九州学院高等学校
この動画を見る 

【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#関西学院高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
この動画を見る 
PAGE TOP