福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用

問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta,  \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。

(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。

(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta,  \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。

(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。

(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学理工学部過去問
投稿日:2021.02.25

<関連動画>

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の5点
$O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,-1), Q(4,0,5)$
を考える。3点O,A,Bを通る平面を$\alpha$とし、$\overrightarrow{ a }=\overrightarrow{ OA }, \overrightarrow{ b }=\overrightarrow{ OB }$とおく。
以下の問いに答えよ。
(1)ベクトル$\overrightarrow{ a }, \overrightarrow{ b }$の両方に垂直であり、x成分が正であるような、
大きさが1のベクトル$\overrightarrow{ n }$を求めよ。
(2)平面$\alpha$に関して点Pと対称な点P'の座標を求めよ。
(3)点Rが平面$\alpha$上を動くとき、$|\overrightarrow{ PR }|+|\overrightarrow{ RQ }|$が最小となるような
点Rの座標を求めよ。

2022九州大学理系過去問
この動画を見る 

【数C】ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。

(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$

(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$

(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。

2021青山学院大学理工学部過去問
この動画を見る 

【高校数学】 数B-17 ベクトルの内積⑥

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=1$で、$\vec{ a }$と$\vec{ b }$のなす角が120°であるとき、$3\vec{ a }-2\vec{ b }$の大きさを求めよう。

②$| \vec{ a } |=5,| \vec{ b } |=3,| \vec{ a } - 2\vec{ b } |=9、3\vec{ a }-2\vec{ b }$のなす角を$\theta$とするとき、$\cos \theta$の値を求めよう。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 
PAGE TOP