【高校数学】共通テスト(プレテスト)大問1の[4]~ちゃっちゃと解説~【数学ⅠA】 - 質問解決D.B.(データベース)

【高校数学】共通テスト(プレテスト)大問1の[4]~ちゃっちゃと解説~【数学ⅠA】

問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
投稿日:2019.09.23

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [1] 陸上競技の短距離100m走では、100mを走るのに\hspace{160pt}\\
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの\\
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。\\
ストライドとピッチはそれぞれ以下の式で与えられる。\\
ストライド (m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)},\\
\\
 ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}\\
\\
ただし、100mを走るのにかかった歩数は、最後の1歩が\\
ゴールラインをまたぐこともあるので、\\
少数で 表される。以下、単位は必要のない限り省略する。\\
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、\\
ストライドは\frac{100}{48.5}より約2.06、ピッチ は \\
\frac{ 48.5 }{10.81} より約4.49である。\\
\\
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、\\
ストライドは1歩あたりの進む距離\\
なので、1秒あたりの進む距離すなわち平均速度は、\\
xとzを用いて\boxed{\ \ ア\ \ }(m/秒) と表される。\\
これよりタイムと、ストライド、ピッチとの関係はタイム=\frac{100}{\boxed{\ \ ア\ \ }} と\\
表されるので\boxed{\ \ ア\ \ } が最大となるとき\\
にタイムが最もよくなる。ただし、タイムがよくなるとは、\\
タイムの値が小さくなることである。\\
\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪ x+z ①z-x ②xz ③\frac{x+z}{2} ④\frac{z-x}{2} ⑤\frac{xz}{2}\\
\\
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと\\
ピッチを考えることにした。右に表は、太郎さんが練習で\\
100mを3回走った時のストライドとピッチのデータである。\\
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、\\
ストライドの最大値は2.40、ピッチの最大値は4.80である。\\
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという\\
関係があると考えてピッチがストライドの1次関数として\\
表されると仮定した。このとき、ピッチzはストライドxを用いて\\
z=\boxed{\ \ イウ\ \ }\ x+\frac{\boxed{\ \ エオ\ \ }}{5} \ldots② と表される。\\
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80\\
まで成り立つと仮定すると、xの値の範囲は\\
\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40\\
\\
(3)y=\boxed{\ \ ア\ \ }とおく。②をy=\boxed{\ \ ア\ \ }に代入することにより、\\
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド\\
とピッチを求めるためには、\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40の範囲で\\
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは\\
x=\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときである。よって、太郎さんのタイムが最もよくなるのは、\\
ストライドが\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときであり、このとき、ピッチは\boxed{\ \ シ\ \ }.\boxed{\ \ スセ\ \ }\\
である。また、このときの太郎さんのタイムは①により\boxed{\ \ ソ\ \ }である。\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2]a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは\\
\log_abと\log_baの大小関係を調べることにした。\\
(1)太郎さんは次のような考察をした。\\
まず、\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}である、この場合\\
\\
\log_39 \gt \log_93\\
\\
が成り立つ。\\
一方、\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}である。この場合\\
\\
\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}\\
\\
が成り立つ。\\
(2)ここで\\
log_ab=t \ldots①\\
とおく。\\
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、\\
それが正しいことを確かめることにした。\\
\log_ba=\frac{1}{t} \ldots②\\
①により、\boxed{\ \ ソ\ \ }である。このことにより\boxed{\ \ タ\ \ }が得られ、②が\\
成り立つことが確かめられる。\\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪a^k=t ①a^t=b ②b^a=t\\
③b^t=a ④t^a=b ⑤t^b=a\\
\\
\boxed{\ \ タ\ \ }の解答群\\
⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}\\
③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}\\
\\
(3)次に、太郎さんは(2)の考察をもとにして\\
t \gt \frac{1}{t} \ldots③\\
を満たす実数t(t≠0)の値の範囲を求めた。\\
\\
太郎さんの考察\\
t \gt 0ならば、③の両辺にtを掛けることにより、t^2 \gt 1を得る。\\
このようなt(t \gt 0)の値の範囲は1 \lt tである。\\
t \lt 0ならば、③の両辺にtを掛けることにより、t^2 \lt 1を得る。\\
このようなt(t \lt 0)の値の範囲は-1 \lt t \lt 0である。\\
\\
この考察により、③を満たすt(t≠0)の値の範囲は\\
-1 \lt t \lt 0, 1 \lt t\\
であることが分かる。\\
ここで、aの値を一つ定めたとき、不等式\\
\log_ab \gt \log_ba \ldots④\\
を満たす実数b(b \gt 0, b≠1)の値の範囲について考える。\\
④を満たすbの値の範囲はa \gt 1のときは\boxed{\ \ チ\ \ }であり、\\
0 \lt a \lt 1のときは\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ チ\ \ }の解答群\\
⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a   ①0 \lt b \lt \frac{1}{a}, a \lt b\\
②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a   ③\frac{1}{a} \lt b \lt 1, a \lt b\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a}   ①0 \lt b \lt a, \frac{1}{a} \lt b\\
②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a}   ③a \lt b \lt 1, \frac{1}{a} \lt b\\
\\
\\
(4)p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}とする。\\
次の⓪~③のうち、正しいものは\boxed{\ \ テ\ \ }である。\\
\\
\boxed{\ \ テ\ \ }の解答群\\
⓪\log_pq \gt \log_qpかつ\log_pr \gt \log_rp\\
①\log_pq \gt \log_qpかつ\log_pr \lt \log_rp\\
②\log_pq \lt \log_qpかつ\log_pr \gt \log_rp\\
③\log_pq \lt \log_qpかつ\log_pr \lt \log_rp\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

国語・数学記述式を共通テストに導入する危険性【専門家達の意見】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#国語(高校生)#大学入試過去問(国語)#共通テスト(現代文)#共通テスト(古文)#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
共通テストの国語、数学に記述式解答を導入した場合の危険性について語ります。
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第3問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

【共通テスト】数学1A2024年レビュー・総評・傾向まとめ

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
この動画を見る 
PAGE TOP