福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。

(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)

(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。

(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)

(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
投稿日:2018.08.17

<関連動画>

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 

放物線と直線  2024早大本庄  オンラインで教えている生徒が早稲田本庄に合格しました!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線$y=x^2$とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
この動画を見る 

【高校数学】数Ⅲ-41 曲線の媒介変数表示②

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\theta$を媒介変数とする。次の式で表される図形はどのような曲線か。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\theta-2 \\
y=5\sin\theta+2
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\dfrac{3}{\cos\theta}+5\\
y=2\tan\theta-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP