2次方程式の応用 (高校数学) - 質問解決D.B.(データベース)

2次方程式の応用 (高校数学)

問題文全文(内容文):
2次方程式$(x-1)(x-2)-(x-k)=0の解を\mathit{α ,β}(\mathit{α}<\mathit{β})とするとき
\mathit{α,β},1,2,kを小さい順に並べよ。(ただし、1<\mathit{k}<2$)
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$(x-1)(x-2)-(x-k)=0の解を\mathit{α ,β}(\mathit{α}<\mathit{β})とするとき
\mathit{α,β},1,2,kを小さい順に並べよ。(ただし、1<\mathit{k}<2$)
投稿日:2024.08.09

<関連動画>

二次関数の難問!大事な考え方【神戸大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を実数とし,$f(x)=-x^2-2x+2,g(x)=-x^2+ax+a$とする。以下の問いに答えよ。

(1)すべての実数$s,t$に対して$f(x)≧g(t)$が成り立つような,$a$の値の範囲を求めよ。

(2)$0≦x≦1を満たすすべての$x$に対して,$f(x)≧g(x)が成り立つような$a$の範囲を求めよ。

神戸大過去問
この動画を見る 

中学入試だけど、二次方程式使って解いちゃった 灘中2023

アイキャッチ画像
単元: #算数(中学受験)#数Ⅰ#2次関数#2次方程式と2次不等式#過去問解説(学校別)#平面図形#図形の移動#平面図形その他
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCD、CHIEは正方形
正方形BEFGの面積=?
*図は動画内参照

2023灘中学校
この動画を見る 

誰もが一度は間違える

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2x-4}{x} = 1$

$\frac{2x-4}{x} < 1$
この動画を見る 

入試問題送って下さった本当にありがとうございました。2023高校入試数学解説100問目 二次方程式 帝京大学高校(改)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(2x-4)^2 = 8-4(x-2)$

帝京大学高等学校
この動画を見る 

【わかりやすく】2次関数の最大最小「範囲が動く場合」(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
関数$y=x^2-2x+3(0 \leqq x \leqq a)$について、次の問いに答えよ。
ただし、$a \gt 0$
(1)最大値を求めよ
(2)最小値を求めよ
この動画を見る 
PAGE TOP