3乗根をはずせ - 質問解決D.B.(データベース)

3乗根をはずせ

問題文全文(内容文):
$ \sqrt[3]{77-20\sqrt{13}},これの3乗根を外せ.$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{77-20\sqrt{13}},これの3乗根を外せ.$
投稿日:2022.07.24

<関連動画>

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}
この動画を見る 

図形と計量 4STEP数Ⅰ280 余弦定理の利用【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて,c²=a²+b²-abのとき,Cを求めよ。
更に,a=3,c=$\sqrt{ 7 }$のとき,bを求めよ。
この動画を見る 

【数I】体系問題集3(数式・関数編)6:数と式:多項式:整式の減法の注意点

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #体系数学#体系数学問題集3(数式・関数編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A=5x²-2xy+y²、B=-3x²+2xy-4y²であるとき、A-Bを計算しよう。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第3問〜データの分析・平均・標準偏差・共分散・相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ ある病院の入院患者10人に対して、病院内で作っている粉薬の評価を調査した。\hspace{50pt}\\
調査の評価項目は、粉薬の「飲みやすさ」と、「飲みやすさ」の要因と考えられる\\
「匂い」「舌触り」、「味」の計4項目についてである。\\
10人の患者が、評価項目について最も満足な場合は10、最も不安な場合は1として、\\
1以上10以下の整数で評価した。表内の平均値、分散、共分散の数値は四捨五入\\
されていない正確な値である。(※動画参照)\\
「飲みやすさ」との共分散は、「飲みやすさ」に対する評価の偏差と、各評価項目\\
に対する評価の偏差の積の平均値である。\\
(1)(\textrm{i})患者番号5の「舌触り」に対する(t)の値は\boxed{\ \ ニ\ \ }である。\\
(\textrm{ii})「飲みやすさ」に対する評価の標準偏差の値は\boxed{\ \ ヌ\ \ }である。\\
(2)「飲みやすさ」に対する評価と「舌触り」に対する評価の相関係数の値を\\
分数で表すと\boxed{\ \ ネ\ \ }である。\\
(3)「飲みやすさ」と「匂い」、「飲みやすさ」と「舌触り」、「飲みやすさ」と「味」\\
の相関係数の値をそれぞれr_1,r_2,r_3と表し、「匂い」、「舌触り」、「味」の評価の\\
平均値をそれぞれa_1,a_2,a_3と表す。a_i,r_i (1 \leqq i \leqq 3)に対し、\bar{ r }と\bar{ a }は以下の式で定める。\\
\bar{ r }=\frac{r_1+r_2+r_3}{3},    \bar{ a }=\frac{a_1+a_2+a_3}{3}\\
「飲みやすさ」との相関係数の値が最も1に近い評価項目は\ \boxed{\ \ ノ\ \ }\ である。\\
また、「r_i-\bar{ r } \lt0かつa_i-\bar{ a } \gt0」を満たす評価項目をすべて挙げると\ \boxed{\ \ ノ\ \ }\ である。\\
\\
(4)「匂い」、「舌触り」、「味」のうち、\ \boxed{\ \ ハ\ \ }\ にあてはまらない評価項目\\
(以降、この評価項目をXと表す)に関して改良を行った。改良後の紛薬に対して、同じ10人の\\
患者がXと「飲みやすさ」について再び評価した。\\
改良後の調査結果では、Xの評価は10人全員の評価が改良前に比べてそれぞれ1上がっていた。\\
改良後のXの評価の平均値を求めると\ \boxed{\ \ ヒ\ \ }\ であり、標準偏差は改良前調査における値と\\
比べて\ \boxed{\ \ フ\ \ }\ 。また、「飲みやすさ」の評価については、改良前の調査において評価が\\
1以上4以下の場合は2上がり、5以上9以下の場合は1上がり、10の場合は評価が変わらず\\
10であった。よって改良後の「飲みやすさ」に対する評価の平均値を求めると\ \boxed{\ \ ヘ\ \ }\ であり、\\
標準偏差は改良前の調査における値と比べて\ \boxed{\ \ ホ\ \ }。\\
\end{eqnarray}
この動画を見る 

データの分析 4STEP数Ⅰ 356 仮説検定2 【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)1枚の公正なコインを10回投げるとき、すべて表が出る確率を反復試行の確率の公式を用いて求めよ。また、表がちょうど9回出る確率を求めよ。
(2)1枚のコインを10回投げたところ、表が9回出た。このコインは表が出やすいと判断して良いか。仮説検定の考え方を用い、基準となる確率を0.05として考察せよ。ただし(1)の結果を用いよ。
この動画を見る 
PAGE TOP