智弁和歌山2021 A - 質問解決D.B.(データベース)

智弁和歌山2021 A

問題文全文(内容文):
AB=5,BC=3,AE=?
*図は動画内参照

2021智辯学園和歌山高等学校
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=5,BC=3,AE=?
*図は動画内参照

2021智辯学園和歌山高等学校
投稿日:2021.02.01

<関連動画>

【数Ⅰ】図形と計量:単位円と三角比の関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
cos90°はなぜ0?鈍角でなぜマイナスに?単位円を使って分かりやすく教えます!
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第3問〜三角比と図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 半径Rの円に内接する四角形ABCDにおいて
AB=1+$\sqrt3$, BC=CD=2, $\angle$ABC=60°
であるとき、$\angle$ADCの大きさは$\angle$ADC=$\boxed{\ \ ソ\ \ }$であり、AC,AD,Rの長さはそれぞれAC=$\boxed{\ \ タ\ \ }$, AD=$\boxed{\ \ チ\ \ }$, R=$\boxed{\ \ ツ\ \ }$である。
また、四角形ABCDの面積は$\boxed{\ \ テ\ \ }$である。さらに、θ=$\angle$DABとするとき、$\sin\theta$=$\boxed{\ \ ト\ \ }$であり、BDの長さはBD=$\boxed{\ \ ナ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田のわかった数学〜高校1年生053〜図形の計量(4)三角形の成立条件と最大角

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(4)\hspace{160pt}\\
三辺の長さがx^2+x+1, -2x-1, x^2+2xである三角形の最大角を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(1)〜整式の割り算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式$x^3$+$ax^2$+$bx$-3 が$x^2$+$x$-6 で割り切れるとき、定数$a$, $b$の値を求めよ。
この動画を見る 

【数Ⅰ】複2次式の因数分解【知らないとできない! 知識問題】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)x^4+3x^2-4を因数分解せよ.$
$ (2)x^4+5x^2+9を因数分解せよ.$
この動画を見る 
PAGE TOP