12岡山県教員採用試験(数学:1-(4) 整数問題) - 質問解決D.B.(データベース)

12岡山県教員採用試験(数学:1-(4) 整数問題)

問題文全文(内容文):
$\boxed{1}-(4)$
$\sqrt{n^2+55}$が自然数となるような
$n\in IN$を全て求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\sqrt{n^2+55}$が自然数となるような
$n\in IN$を全て求めよ.
投稿日:2021.03.16

<関連動画>

千葉大 素数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数

(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ

(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ

出典:2007年千葉大学 過去問
この動画を見る 

【数学A/整数】約数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
180の約数の個数とその総和を求めよ。
この動画を見る 

インド数学オリンピック

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数である.
$\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=1$を満たす
$abc \leqq \dfrac{1}{8}$を示せ.

インド数学オリンピック過去問
この動画を見る 

素数を求めよ お茶の水女子大付属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
123123のように3ケタの同じ整数を2つ並べて6ケタの整数を作るとある素数で必ず割り切れる。
この素数をすべて求めよ。

お茶の水女子大学附属高等学校
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
この動画を見る 
PAGE TOP