【三角比の応用を整理!】三角比を使う定理の使い方を解説〔高校数学 数学〕 - 質問解決D.B.(データベース)

【三角比の応用を整理!】三角比を使う定理の使い方を解説〔高校数学 数学〕

問題文全文(内容文):
正弦定理、余弦定理、三角形の面積の公式を解説します
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
正弦定理、余弦定理、三角形の面積の公式を解説します
投稿日:2024.06.20

<関連動画>

小学生向け問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
円周率は3.14とする
斜線部の面積
*図は動画内参照
この動画を見る 

factorization : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
以下の式を因数分解せよ。
\[
(x^2 -2x -3 )^2 + 13(x^2 -2x -3) - 90
\]
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(2)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+2mx-2m+3=0$ が次のような解をもつとき、定数
$m$の値の範囲を求めよ。

(1)2つの解がともに2より大
(2)2つの解がともに2と4の間


${\Large\boxed{2}} x^2+(m-1)x-$$m^2$$+2$$=0$ の1つの解が-2と0の間、
他の解が0と1の間にあるときのmの値の範囲は?
この動画を見る 

4乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{\sqrt[4]{8}+\sqrt{2}+\sqrt[4]{2}+1} \right)^{20}$
これを計算せよ.
この動画を見る 

連立2元4次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^4+y^4=881
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 
PAGE TOP