中1数学「かっこのある文字式の加法と減法」【毎日配信】 - 質問解決D.B.(データベース)

中1数学「かっこのある文字式の加法と減法」【毎日配信】

問題文全文(内容文):
かっこのある文字式の加法と減法に関して解説していきます。
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
かっこのある文字式の加法と減法に関して解説していきます。
投稿日:2020.10.10

<関連動画>

中1数学「正多面体」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
正多面体に関して解説していきます。
この動画を見る 

【中1 数学】  1-①⑧ 文字の計算(乗法・除法)

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 文字の計算(乗法・除法)
次の計算をせよ
① $3x \times (-2) =$
② $-15 x \div 5 =$
③ $9x \div 5 =$
④ $12y \div (-\dfrac{3}{4}) =$
⑤ $(3x - 2) \times (- 5) =$
⑥ $4(- x + 2) =$
⑦ $(15x - 10) \div (- 5) =$
⑧ $(27x + 9) \div (\dfrac{3}{4}) =$
⑨ $\dfrac{(3x - 1)}{4} \times 8$
⑩ $\dfrac{(5x - 3)}{8} \times 6 =$
⑪ $5(2x - 3) - 3(3x - 1)=$
この動画を見る 

【裏技】知ってないのヤバいレベル

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図の表面積を求めよ
この動画を見る 

【中1 数学】中1-9 計算のまとめ

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
加法、減法、乗法、除法を まとめて①____っていうよ。

【計算の順序】
②____→③____→乗除→加減

$(5+4) \times (-3)$を
$5 \times (-3)+4 \times (-3)$のように
することを④____法則っていうよ!

⑤$5 \times (-12)-12=(-4)$
⑥$-7+(-12-3) \div 5$
⑦$(-3)^2-5 \times (-2)^2$
⑧$7-(3^2-5)$
⑨$20 \div (-2^2)-(-6) \times 2$
⑩$-5-18 \div (-3)$
⑪$\{5-(4-8)\}\div (-3)$
⑫$6-\{(-2)^2(5-8)\}$
⑬$(-\displaystyle \frac{3}{2})^2 \div(-6) \times \displaystyle \frac{8}{7}$
⑭$(\displaystyle \frac{1}{4}-\displaystyle \frac{5}{6}) \times (-12)$
この動画を見る 

【高校受験対策】数学-死守31

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#確率#2次関数#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$13 + 3\times (- 6)$を計算せよ。

②$3(2a + 3) - 2(5a + 4)$ を計算せよ。

③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。

④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。

⑤ 1次方程式$3x-8=7x+16$を解け。

⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。

⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。

⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。

⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。

図は動画内参照
この動画を見る 
PAGE TOP