福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数

問題文全文(内容文):
数学III 微分(6) 高次導関数

f(x)=sinxの第n次導関数は
f(n)(x)=sin(x+nπ2)であることを示せ。
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III 微分(6) 高次導関数

f(x)=sinxの第n次導関数は
f(n)(x)=sin(x+nπ2)であることを示せ。
投稿日:2021.08.09

<関連動画>

福田の数学〜早稲田大学2024年人間科学部第6問〜空間内の折れ線の長さの最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
6 2点A(1,0,1)とB(2, 3, 1)、および、xy平面上を自由に動く2つの点PとQがあり、l=AP+BQ+PQ2とする。lが最小値をとるとき、点PとQを通るxy平面上の直線の方程式はy=     x     であり、lの最小値は    +     である。
この動画を見る 

【演習!】不等式の証明での微分の使い方について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
x0をみたす全ての実数xについて
xx36sinx
が成り立つことを示せ
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年文系第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#不定積分・定積分#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数tの関数
F(t)=01|x2t2|dx
について考える。
(1)0t1のとき、F(t)をtの整式として表せ。
(2)t0 のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。

2022東北大学文系過去問
この動画を見る 

上智大 関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
f(x)=x2+ax+bx2x+1の最大値が3、最小値が13

(a,b)の値を求めよ

出典:2005年上智大学 過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 媒介変数表示
x=2cosθ, y=3tanθ+1
で表される図形Cを考える。

(1)Cは頂点(±    ,     )、焦点(±    ,     )
漸近線y=±        x+    をもつ双曲線である。
(2)双曲線Cと直線x=4は、2点(4,     ±        )
で交わる。\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP preload imagepreload image