福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数

問題文全文(内容文):
数学$\textrm{III}$ 微分(6) 高次導関数

$f(x)=\sin x$の第$n$次導関数は
$f^{(n)}(x)=\sin(x+\frac{n\pi}{2})$であることを示せ。
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(6) 高次導関数

$f(x)=\sin x$の第$n$次導関数は
$f^{(n)}(x)=\sin(x+\frac{n\pi}{2})$であることを示せ。
投稿日:2021.08.09

<関連動画>

福田のわかった数学〜高校3年生理系022〜極限(22)関数の極限、三角関数の極限(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
この動画を見る 

【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinを微分するとどうなる??
この動画を見る 

東工大 y=e^x に引ける接線の数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ

出典:1980年東京工業大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
曲線$y=\dfrac{e^x+e^{-x}}{2} (x \gt 0)$を$C$で表す。$\textrm{Q}(X,Y)$を中心とする半径$r$の円が曲線$C$と、点$\textrm{P}(t,\dfrac{e^t+e^{-t}}{2})$ (ただし$t \gt 0$)において共通の接線をもち、さらに$X \lt t$であるとする。このとき$X$および$Y$を$t$の式で表すと
$X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }$
となる。$t$の関数$X(t),Y(t)$を$X(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }$により定義する。全ての$t \gt 0$に対して$X(t) \gt 0$となるための条件は、$r$が不等式$\boxed{\ \ (う)\ \ }$を満たすことである。$\boxed{\ \ (う)\ \ }$が成り立たないとき、関数$Y(t)$は$t=\boxed{\ \ (え)\ \ }$において最小値$\boxed{\ \ (お)\ \ }$をとる。また$\boxed{\ \ (う)\ \ }$が成り立つとき、$Y$を$X$の関数と考えて、$(\dfrac{dY}{dX})^2+1$を$Y$の式で表すと$(\dfrac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ }$ となる。

2021慶應義塾大学医学部過去問
この動画を見る 

微分方程式 同次形 p 163,q3(3)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$xy^2 \dfrac{dy}{dx}=x^3+y^3$の一般項を求めよ.
この動画を見る 
PAGE TOP