【中学数学】この形の問題の裏技集~外角の二等分線~ 4-6.5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】この形の問題の裏技集~外角の二等分線~ 4-6.5【中2数学】

問題文全文(内容文):
【中2数学】外角の二等分線説明動画です
チャプター:

00:00 はじまり

00:24 裏技はじまり

03:54 証明

06:30 他の例題

07:51 まとめ

08:29 まとめノート

単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中2数学】外角の二等分線説明動画です
投稿日:2021.12.04

<関連動画>

ビッグマックのチーズの値段ってなんぼ?

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ビッグマックを使って数学的に解説
この動画を見る 

佐賀県立高校入試2021年2⃣連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
この動画を見る 

【数学】中2-56 三角形の合同① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【ポイント】
三角形の合同条件は3種類!!
①____がそれぞれ等しいとき
②____________がそれぞれ等しいとき
③____________がそれぞれ等しいとき

④右の三角形から合同なものを選び、記号を使って表そう!
(合同条件はポイントの番号から選ぶ)
※図は動画内参照
この動画を見る 

高等学校入試予想問題:富山県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平行と合同#文字と式#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$6a^2b\times 2b\div 3ab$を計算せよ.
(2)$\sqrt{32}-\sqrt{18}+\sqrt2$を計算せよ.
(3)$x^2-5x-24=0$を解け.
(4)「$am$のリボンから.$bcm$切り取ると残りの長さは$2m$より短い.」
  不等式で表せ.
(5)$\angle x$は何度か.

$\boxed{2}$
(1)7番目の図形と16番目の図形の面積をそれぞれ求めよ.
(2)$n$を偶数とするとき,$n$番目の図形と$(2n+1)$番目の図形の面積の差が$331cm^2$である.$n$はいくつか.

$boxed{3}$
$A,B,C,D,E$は円$O$上の5点である.
$AC,BD$は直径であり,$AD\parallel BD$,交点は$F,G$である.

(1)$CE=?,OG=?$
(2)$FG=?$
(3)$\triangle ACF$と$\triangle ODA$の面積比は?



この動画を見る 

連立方程式だけど、2次式 四天王寺

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け(x>0 , y<0)
$
\begin{eqnarray}
\left\{
\begin{array}{l}
3x^2 + y^2 = 9 \\
2x^2 - 3y^2 = -5
\end{array}
\right.
\end{eqnarray}
$
四天王寺高等学校
この動画を見る 
PAGE TOP