大学入試問題#726「一橋レベルでこれは落とせん」 一橋大学(2021)積分方程式 - 質問解決D.B.(データベース)

大学入試問題#726「一橋レベルでこれは落とせん」 一橋大学(2021)積分方程式

問題文全文(内容文):
$f(x)$は微分可能かつ導関数が連続な関数とする。
$f(0)=0$であるとき、
$\displaystyle \frac{d}{dx}(\displaystyle \int_{0}^{x} e^{-t}f(x-t)dt)=\displaystyle \int_{0}^{x} e^{-t}f'(x-t)dt$ を示せ

出典:2021年一橋大学後期 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)$は微分可能かつ導関数が連続な関数とする。
$f(0)=0$であるとき、
$\displaystyle \frac{d}{dx}(\displaystyle \int_{0}^{x} e^{-t}f(x-t)dt)=\displaystyle \int_{0}^{x} e^{-t}f'(x-t)dt$ を示せ

出典:2021年一橋大学後期 入試問題
投稿日:2024.02.05

<関連動画>

大学入試問題#132 横浜国立大学(2007) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{4}{3}}^{2}\displaystyle \frac{1}{x^2\sqrt{ x-1 }}\ dx$を計算せよ。

出典:2007年横浜国立大学 入試問題
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

順天堂(医)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$w=z+z^2+z^4$

(1)
 ①$w+\bar{ w }$
 ②$w・\bar{ w }$

(2)
 ①$\cos \displaystyle \frac{2}{7}\pi+\cos \displaystyle \frac{4}{7}\pi+\cos \displaystyle \frac{8}{7}\pi$
 ②$\sin \displaystyle \frac{2}{7}\pi+\sin \displaystyle \frac{4}{7}\pi+\sin \displaystyle \frac{8}{7}\pi$


出典:2019年順天堂大学医学部 過去問
この動画を見る 

大学入試問題#866「まあ、なんとかなるわな」 #東京女子医科大学(2005) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^8$を計算せよ

出典:2005年東京女子医科大学
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第2問〜対称式もどきの表す点の動く領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとするxy平面上に点A(1,-1)があり、点Bは$\overrightarrow{AB}$=(2$\cos\theta$, 2$\sin\theta$)(0≦θ≦2π)を満たす点である。Bの軌跡を境界線とする2つの領域のうち、点Aを含む領域を領域Cとする。ただし、領域Cは境界線を含む。
(1)点Bの軌跡の方程式は$\boxed{\ \ ナ\ \ }$である。
(2)点(x,y)がxy平面上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く範囲は式$\boxed{\ \ ニ\ \ }$で表される領域である。
(3)点(x,y)が領域C上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く領域を領域Dとする。
(i)領域Dを図示しなさい。ただし領域は斜線で示し、境界線となる式も図に記入すること。
(ii)領域Dの面積は$\boxed{\ \ ヌ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP