大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分 - 質問解決D.B.(データベース)

大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分

問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
単元: #数Ⅱ#三角関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
投稿日:2021.09.03

<関連動画>

14大阪府教員採用試験(数学:高3-1番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
この動画を見る 

【数Ⅲ-161】定積分で表された関数④(最大最小編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数④・最大最小編)

①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。

②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。

この動画を見る 

【高校数学】数Ⅲ-109 接線と法線②

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=tan x \left(0 \lt x \lt \dfrac{\pi}{2}\right)$について、
傾きが2である接線の方程式を求めよ。

②曲線$y=\log x$について、原点から引いた接線の方程式を求めよ。

③曲線$y=\sqrt x$について、点$(-2,0)$から引いた接線の方程式と接点の座標を求めよ。
この動画を見る 

【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
この動画を見る 

福田の数学〜複数の絶対値に対応できるか〜東京大学2018年文系第1問(1)〜絶対値を含む関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$ で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
(1) 放物線 C 上を動く点 A と直線l, m の距離をそれぞれL,M とする。$\sqrt{ \mathstrut L } + \sqrt{ \mathstrut M }$が最小値をとるときの点 A の座標を求めよ。

2018東京大学文過去問
この動画を見る 
PAGE TOP