問題文全文(内容文):
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。
2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。
2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
チャプター:
0:00 問題1(1)の解説
2:02 問題1(2)の解説
4:16 問題1(3)の解説
8:12 問題2の解説
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。
2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。
2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
投稿日:2024.11.16





