【数Ⅰ】【2次関数】条件付きの解 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】条件付きの解 ※問題文は概要欄

問題文全文(内容文):
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。

2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
チャプター:

0:00 問題1(1)の解説
2:02 問題1(2)の解説
4:16 問題1(3)の解説
8:12 問題2の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。

2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
投稿日:2024.11.16

<関連動画>

福田のわかった数学〜高校1年生021〜2次方程式の解の分離

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次方程式の解の分離
$x^2-2ax+a+2=0$
の解が$1 \lt x \lt 3$の範囲に少なくとも
1つ存在する$a$の範囲を求めよ。
この動画を見る 

円 令和4年度 2022 入試問題100題解説99問目! 愛知県

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AD=?
*図は動画内参照

2022愛知県
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。座標平面上の放物線$y=x^2+ax+b$をCとおく。
Cは、原点で垂直に交わる2本の接線$l_1,l_2$を持つとする。
ただし、Cと$l_1$の接点$P_1$のx座標は、Cと$l_2$の接点$P_2$のx座標より小さいとする。
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。
(2)i=1,2に対し、円$D_i$を、放物線Cの軸上に中心を持ち、点$P_i$で$l_i$
と接するものと定める。$D_2$の半径が$D_1$の半径の2倍となるとき、aの値を求めよ。

2022東京大学文系過去問
この動画を見る 

数学界をにぎわした問題

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
以下の問題を求めよ
$6 \div 2(1+2)$
この動画を見る 
PAGE TOP