解いたらわかるこの気持ち - 質問解決D.B.(データベース)

解いたらわかるこの気持ち

問題文全文(内容文):
$3x+2y=1$のとき
$9x^2-4y^2+3x+6y=$
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x+2y=1$のとき
$9x^2-4y^2+3x+6y=$
投稿日:2021.04.28

<関連動画>

【12/28】中3冬特訓4日目

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。

➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。

③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。

④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
この動画を見る 

この問題好きかも。式の値 嵯峨野高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a= \sqrt 2 -1 $のとき
$a^2(a+2)^2(a- \sqrt 2)(a^2+2a+1) = ?$

嵯峨野高等学校
この動画を見る 

【中学数学】式の展開の宿題Live【中3夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{align}
(1)(x-6)^2-9(x+2)(x-2)\qquad&(2)2(x+2)(x-5)-(x-3)^2\\

(3)4(x-3)(x-1)-3(x-2)^2\qquad&(4)4x^2-(2x+7y)(2x-7y)\\

(5)(x-3y)(x-y)+(2x+y)^2\qquad&(6)(x+4y)^2-(x-4y)^2\\

(7)(2a+5b)^2-20ab\qquad&(8)(a+b-3)(a-b-3)\\
\end{align}
この動画を見る 

東大寺学園の因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(x^2+x-3)(x^2-3x-3) - 5x^2$
東大寺学園高等学校
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 
PAGE TOP