【数Ⅲ】【関数と極限】(1)lim tanx°/x(2)lim sin(x-π)/x-π(3)lim (x-π/2)tanx(4)lim sinπx/x-1(5)lim sin(sinx)/sinx - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】(1)lim tanx°/x(2)lim sin(x-π)/x-π(3)lim (x-π/2)tanx(4)lim sinπx/x-1(5)lim sin(sinx)/sinx

問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
チャプター:

0:00 問題と方針
1:46 解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
投稿日:2026.02.06

<関連動画>

福田のわかった数学〜高校3年生理系001〜極限(1)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(14)

$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。 
この動画を見る 

福田のおもしろ数学020〜わんちゃんの男の子と女の子の比率は〜Google入社試験の類題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
わんちゃんの国があります。この国ではどの家庭も男の子が産まれるまで子供を作り続けます。この国の男の子と女の子の比率はどうなりますか.

google入社試験過去問
この動画を見る 

円周率πが無理数であることの証明(数III)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定理(1947,IvanNiren)
πは無理数である

補題1 
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
この動画を見る 

大学入試問題#470「誘導なくてもどうにかできそう」 信州大学 理・医学部(2021) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\forall\ a,b$
$f(a+b)=f(a)+f(b)+4ab$
$f'(0)=2$
(1)
$f(0)$を求めよ

(2)
$f(x)$は微分可能を示せ
$f(x)$を求めよ

(3)
$\displaystyle \lim_{ x \to \infty } \displaystyle \int_{1}^{x} \displaystyle \frac{1}{f(t)}dt(x \gt 1)$

出典:2021年信州大学 入試問題
この動画を見る 
PAGE TOP