問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
チャプター:
0:00 問題と方針
1:46 解説
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
投稿日:2026.02.06





