数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく

問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。

(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
 (a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
 (b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$

(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。

(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
 (a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
 (b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$

(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
投稿日:2021.10.14

<関連動画>

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑬内心ベクトルの求め方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
角$A=60°,AB=8,AC=5$である三角形ABCの内心をIとする。$AB=b,AC=c$とするときAIをb,cを用いて表せ.
この動画を見る 

福田の数学〜東北大学2023年理系第5問〜空間ベクトルと内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。

2023東北大学理系過去問
この動画を見る 

【数学B/平面ベクトル】ベクトルの大きさの最小値を求める

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(3,-2),\vec{ b }=(1,-2)$のとき、$|\vec{ a }+t\vec{ b }|$の最小値とそのときの実数$t$の値を求めよ。
この動画を見る 

もっちゃんと数学 内積

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
内積に関して解説していきます.
この動画を見る 
PAGE TOP