福田の一夜漬け数学〜図形と方程式〜領域(11)証明問題への領域の利用、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(11)証明問題への領域の利用、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。

${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1     \cdots③\\
\end{array}
\right.
\end{eqnarray}$

このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。

${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1     \cdots③\\
\end{array}
\right.
\end{eqnarray}$

このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
投稿日:2018.09.08

<関連動画>

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。                        
(1)整式$x^3$を2次式$(x-a)^2$で割った時の余りを求めよ。
(2)実数を係数とする2次式$f(x)=x^2+\alpha x+\beta$で整式$x^3$を割った時の余りが
$3x+b$とする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
この動画を見る 

福田のおもしろ数学176〜ルートが無限に重なる等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{x\sqrt{x\sqrt{...}}}$=$x$ を証明してください。ただし$x$は正の実数とする。
この動画を見る 

【高校数学】 数Ⅱ-42 剰余の定理と因数定理①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の整式を[  ]内の整式で割ったときの余りを求めよう。

①$③x^2-2x+1 [x-1]$

②$x^3+2x^2-5x-7 [x+1]$

③$4x^3-x^2-2x+1 [2x-1]$

④$2x^3-x^2+5 [2x+3]$
この動画を見る 

【高校数学】数Ⅲ-21 三角形の形状②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
この動画を見る 

【数Ⅱ】【微分法と積分法】1/6公式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{α}^β(x-α)(x-β)dx=-\dfrac{1}{6}(β-α)³$

を用いて、次の定積分を求めよ。
(1)$\int_{-1}^2(x²-x-2)dx$
(2)$\int_{1-\sqrt 2}^{1+\sqrt2}(x²-2x-1)dx$
(3)$\int_{3}^4(14x-24-2x²)dx $
この動画を見る 
PAGE TOP