【高校数学】 数Ⅱ-82 不等式の表す領域⑤ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-82 不等式の表す領域⑤

問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$y \geqq x^2,y\leqq2x+3$

②$x^2+y-4\lt0,x^2-2x-y\lt0$

単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$y \geqq x^2,y\leqq2x+3$

②$x^2+y-4\lt0,x^2-2x-y\lt0$

投稿日:2015.07.20

<関連動画>

【高校数学】三角関数のグラフの裏技~平行移動の場合~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
グラフを書け
1⃣
$y=\sin \theta+1$

2⃣
$y=2\sin(2\theta-\displaystyle \frac{\pi}{3})+1$
この動画を見る 

1963の1963乗を10で割った余りは? 2024中央大附属

アイキャッチ画像
単元: #数Ⅱ#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$1963^{1963}$を10で割った余りを求めよ
2024中央大学附属高等学校
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

山形大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 0$である.
$f(x)=x^4-6a^2x^2+5a^4(a,0)$における接線$\ell$と$f(x)$とで囲まれる面積を求めよ.

山形大過去問
この動画を見る 

08愛知県教員採用試験(数学:9番 区分求積法)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
区分求積法を解説していきます.
この動画を見る 
PAGE TOP