【数Ⅱ】【微分法と積分法】微分の基本2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】微分の基本2 ※問題文は概要欄

問題文全文(内容文):
$f(x)=x^2-3x$ とする。
関数 $y=f(x)$ のグラフ上の2点 $(1,\,f(1)),\ (a,\,f(a))$ を結ぶ直線の傾きが、$x=b$ $(1< b < a)$ における微分係数 $f'(b)$ に等しい。
$b$ を $a$ で表せ。
チャプター:

0:00 オープニング
0:04 導入 この問題、何がゴール?
1:21 座標の表し方について
2:14 2点を通る直線の傾きとは?
4:23 エンディング

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=x^2-3x$ とする。
関数 $y=f(x)$ のグラフ上の2点 $(1,\,f(1)),\ (a,\,f(a))$ を結ぶ直線の傾きが、$x=b$ $(1< b < a)$ における微分係数 $f'(b)$ に等しい。
$b$ を $a$ で表せ。
投稿日:2025.02.19

<関連動画>

高専数学 微積II #51(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$\dfrac{dz}{dt}$を$t,\dfrac{\alpha z}{\alpha x},\dfrac{\alpha z}{\alpha y}$で表せ.

(3)$x=\sin t+\cos t$
$y=\sin t \cos t$
(4)$x=\dfrac{1}{\sqrt{x+1}}$
$y=\sqrt{t+1}$
この動画を見る 

【数Ⅱ】【微分法と積分法】微分の基本3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\{(ax+b)^n\}'=na(ax+b)^{n-1}$ ($n$ は正の整数) であることを用いて、次の関数を微分せよ。
$(1)\ y=(2x+1)^3$
$(2)\ y=(x-1)^4$
$(3)\ y=(-2x+1)^5$
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

【高校数学】 数Ⅱ-72 2つの円②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①中心が点(5,12)で、円$x^2+y^2=9$に外接する円を求めよう。

②中心が点(4,-3)で、円$x^2+y^2=49$に内接する円を求めよう。
この動画を見る 

16和歌山県教員採用試験(数学:6番 対数の不等式)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$2\log_3 x-4\log_x 27 \leqq 5$を解け.
この動画を見る 
PAGE TOP