【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ - 質問解決D.B.(データベース)

【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ

問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
投稿日:2025.10.11

<関連動画>

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値

慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る 

【高校数学】 数B-100 数学的帰納法⑥

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$n$が自然数のとき,$3^n$と$5n+1$の大小を比較しよう.
この動画を見る 

【階差数列の攻略法はこれ!】階差数列の一般項の求め方を解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
階差数列の一般項の求め方について解説します。
この動画を見る 

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 
PAGE TOP