大学入試問題#546「もう飽きてると思います」 愛知教育大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#546「もう飽きてると思います」 愛知教育大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2}{1+e^x} dx$

出典:2023年愛知教育大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2}{1+e^x} dx$

出典:2023年愛知教育大学 入試問題
投稿日:2023.05.25

<関連動画>

大学入試問題#215 宮崎大学(2011) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^2}{x(x+1)}$を計算せよ。

出典:2011年宮崎大学 入試問題
この動画を見る 

大学入試問題#395「使う技は、関数から・・・」 大阪市立大学2009 #極限 誘導は概要欄

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき
$\sin\ x \geqq \displaystyle \frac{2}{\pi}x$を示せ

(2)
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{0}^{\frac{\pi}{2}} e^{-n\ \sin\ x}dx=0$を示せ

出典:2009年大阪市立大学 入試問題
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
この動画を見る 

大学入試問題#346「2種類の解法の紹介」 電気通信大学(2013) #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:2013年電気通信大学 入試問題
この動画を見る 

大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
この動画を見る 
PAGE TOP